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Abstract: The fundamental principles of density functional theory are applied to achieve a better understanding
of various theoretical tools for describing chemical reactivity. Emphasis is given to the Fukui function, the
central site reactivity index of density functional theory, which is approached through its own variational
principle. A maximum hardness principle is then developed and discussed. To make contact with an earlier
proof of a maximum hardness principle, changes in chemical potential are considered.

I. Density Functional Theory

Chemists strive to discover theoretical principles for under-
standing chemical reactivity. Useful for this endeavor is density
functional theory (DFT),1,2 which has provided justification for
existing chemical principles and inspired new chemical prin-
ciples. DFT reactivity indexes such as the electronic chemical
potential,1,3 the chemical hardness,4-6 and the Fukui function7,8

appear throughout reactivity theory. In this paper we use the
fundamental variational principles of DFT to systematically
extend the understanding of these indexes.

Density functional theory is founded upon two theorems of
Hohenberg and Kohn:

(1) The ground-state electron density,F(rb), determines
eVerything about a chemical system.9 In particular, the density
determines the number of electrons (N[F] ≡ ∫F(rb)drb)), the
external potential,ν0(rb) (ordinarily just the potential due to the
atomic nuclei), and the Hohenberg-Kohn functional,F[F] (the
sum of the electronic kinetic energy functional,T[F], and the
electron-electron repulsion energy functional,Vee[F]). The total
energy functional is then9

The variational principle for the total energy functional is
established by Hohenberg and Kohn’s second theorem:

(2) For any trial N-electron density,F̃(rb),

whereF0(rb) is the exact N-electron ground-state density and
E0 is the exact ground-state energy for the system with N
electrons and external potentialν0(rb).9 Hence, in the presence
of ν0(rb), the energy ofN electrons arranged “wrong” (in such a
way thatG̃(rb) * G0(rb)) is always greater than the energy ofN
electrons arranged “right” (with densityG0(rb)). One can regard
G̃(rb) as the density for some excited state (not necessarily an
eigenstate) of the system;εν0[G̃] is the expectation value of the
energy in that state.

The Hohenberg-Kohn theorems may be clarified by con-
sidering the “thermodynamic analogy”, a perspective that is
exploited throughout ref 1. As a simple example of this
approach, consider an ideal gas of molecules, each with mass
M. If we know the equilibrium mass density of the gas as a
function of the position in space, we can determine “everything”;
in particular, we can find the volume and shape of the
“container” (which is analogous to the external potential, since
the positive charges on the atomic centers serve to “confine”
the electrons) and the number of molecules in the gas (by
integration of the mass density and division byM). This is the
analogue of the first Hohenberg-Kohn theorem. Now, suppose
we know that there areN ideal gas molecules in a container of
volumeV. It is statistically possible that all of the gas molecules
will be in the “top half” of the container, but densities associated
with this arrangement have higher free energy than the ground-
state density. This represents the analogue of the second
Hohenberg-Kohn theorem.

II. Mathematical Preliminaries

Just as many useful results of thermodynamics are derived
by observing how state functions change when one varies the
volume, number of particles, or density subject to constraints,
useful results for understanding chemical reactivity are obtained
by observing how the various state functions, especially the total
energy, change as the density changes. Information about the
effects of density change is contained in the functional derivative
with respect to the density. For instance, the change in the total
energy, dεν0[F] ) εν0[F] - εν0[F0], is related to the change in
the density,δF(rb) ) F(rb) - F0(rb), through
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εν0
[F] ≡ F[F] + ∫F( rb)ν0( rb)drb (1)

εν0
[F̃] g εν0

[F0] ) E0[F0] (2)
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whereδεν0[F0]/δF(rb) symbolizes the functional derivative of the
energy functional,εν0[F], with respect to the density,F(rb),
evaluated at the densityF(rb) ) F0(rb). Equation 3 is analogous
to the equation dg(x) ) (dg(x0)/dx)dx in differential calculus,
and just as the derivative may be defined through this last
equation, the functional derivative may be defined through eq
3: δεν0[F0]/δF(rb) is defined as that function which maps
infinitesimal variations of the density aboutF0(rb) to the
appropriate variation in the energy functional.10

The analogies between differential calculus and “functional
calculus” may be extended further by considering delta function
perturbations,δF(rb) ) εδ(rb - rb0), in eq 3. This leads to an
explicit expression for the functional derivative,

This equation indicates that the functional derivative of a
quantity at a point,rb0, represents how that quantity would change
if the electron density were increased a tiny amount atrb0. The
similarity between eq 4 and the result from differential calculus,

indicates that results in functional calculus such as the product
rule, quotient rule, chain rule, and Taylor series expansion can
be derived through straightforward adaptation of standard
derivations in differential calculus. Appendix A of ref 1 details
this approach. Of particular importance for the present purposes
is the functional Taylor series, which for the energy functional
is

Truncation of the expansion at second order yields “second-
order density functional perturbation theory”. In this paper, we
assume that all Taylor series converge.

We conclude the introduction with some notes about the
existence of functional derivatives. dg(x0)/dx is said to exist if
and only if the derivative from above (withε > 0),

equals the derivative from below (withε < 0),

Within the popular zero-temperature grand canonical ensemble
formulation of density functional theory, the derivatives from
above and below in eq 4 are not equal, thereby necessitating

the use of one-sided functional derivatives, which in analogy
to eqs 7 and 8 are given by

For notational and conceptual simplicity, during the remainder
of the paper we assume that all functional derivatives exist and
are well-defined; in particular, we assume that functional
derivatives from above and below are equal. The modifications
required to accommodate the zero-temperature grand canonical
ensemble formulation ofεν0[F] are summarized in the Appendix.

III. Principles Governing Charge Transfer

Chemical reactions often involve some charge transfer
between reactant molecules (or between two different parts of
one molecule). The active sites of a reactant molecule are usually
places where the addition (or loss) of electrons is favorable.7,11

So we may approach the understanding of chemical reactivity
by addressing the question,Where is the best place to add an
electron to a molecule?

To begin, consider the addition of a small fraction,τ, of an
electron to theN0-electron system with external potentialν0(rb)
andexactground-state densityFN0(rb). If τ is small enough, the
Taylor series (eq 6) for εν0[F] may be truncated at second order,

This formula uses notations from Table 1. The variational
principle (eq 2) tells us that the ground state of the (N0 + τ)-
electron system is the state with lowest total energy.

For a given value ofτ, the first two terms in eq 10 are site-
independent. Accordingly, minimizing the energy is equivalent
to minimizing the last term in eq 10. That is,the best way to
add aτth of an electron to a molecule is to add it to the place
defined by that function,∆F+τ(rb), that minimizes

subject to the constraint that∫∆F+τ(rb) drb ) ∆N ) τ. Note that
the two-variable hardness kernel,η[FN0; rb, rb′], is unchanged
during the minimization process.

Introducing the normalized function, g(rb), we rewrite
∆F+τ(rb) as τg(rb) and observe that the normalized function,
gmin(rb), which minimizes eq 11 is invariant to changes inτ.
Choosingτ ) 1 recovers the variational principle of Chattaraj,
Cedillo, and Parr.31 Taking τ < 0 allows one to apply eqs 10
and 11 to electron removal.

(10) The situation is actually more complicated than this. The functional
derivative only exists for so-called “conventional density variations”, that
is, variations in the density which are associated with a first-order change
in the wave function of the system. See: Perdew, J. P.; Levy, M.Phys.
ReV. B 1985, 31, 6264.
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(16) Pearson, R. G.J. Am. Chem. Soc.1963, 85, 3533.
(17) Chattaraj, P. K.; Lee, H.; Parr, R. G.J. Am. Chem. Soc.1991, 113,

1855.
(18) Pearson, R. G.Inorg. Chim. Acta1995, 240, 93.
(19) Pearson, R. G.J. Chem. Educ.1987, 64, 571.
(20) Zhou, Z.; Parr, R. G.J. Am. Chem. Soc.1989, 111, 1371.
(21) Zhou, Z.; Parr, R. G.J. Am. Chem. Soc.1990, 112, 5720.
(22) Parr, R. G.; Chattaraj, P. K.J. Am. Chem. Soc.1991, 113, 1854.
(23) Pearson, R. G.Acc. Chem. Res.1993, 26, 250.
(24) Parr, R. G.; Zhou, Z.Acc. Chem. Res.1993, 26, 256.

dεν0
[F] ) ∫δεν0

[F0]

δF( rb)
δF( rb) drb (3)

δεν0
[F0]

δF( rb0)
) lim

εf0
{εν0

[F0( rb) + εδ( rb - rb0)] - εν0
[F0( rb)]

ε
} (4)

dg(x0)

dx
) lim

εf0
{g(x0 + ε) - g(x0)

ε } (5)

εν0
[F0 + ∆F] ) εν0

[F0] + ∫δεν0
[F0]

δF( rb)
∆F( rb) drb +

1/2∫∫ δεν0
[F0]

δF( rb′)δF( rb)
∆F( rb)∆F( rb′) drb drb′ + ... (6)

dg+(x0)

dx
) lim

εf0+
{g(x0 + ε) - g(x0)

ε } (7)

dg-(x0)

dx
) lim

εf0-
{g(x0 + ε) - g(x0)

ε } (8)

δεν0

+/-[F0]

δF( rb0)
≡ lim

εf0+/-
{εν0

[F0( rb) + εδ( rb - rb0)] - εν0
[F0( rb)]

ε
}
(9)

εν0
[FN0

+ ∆F+τ] ) E0[FN0
] + µ[FN0

]τ +

1/2∫∫η[FN0
; rb,rb′]∆F+τ( rb)∆F+τ( rb′) drb drb′ (10)

η[FN0
;∆F+τ] ≡ ∫∫η[FN0

; rb,rb′]∆F+τ( rb)∆F+τ( rb′) drb drb′
(11)
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Maintaining the choiceτ ) 1 in eq 11, we define the Fukui
function, f[FN0;rb], to be the minimizing function,gmin(rb), and
define the chemical hardness,η[FN0] as the minimizing value
of the integral, η[FN0;f]. These definitions agree with the
conventional definitions of these quantities (see Table 1). To
confirm this, observe that the function which minimizes eq 11
identifies the way the density of a molecule changes when one
adds a fraction of an electron in a fixed external potential to
give a new ground state. Therefore,

in agreement with the original definition of Yang and Parr.7

Using eq 12 and applying the chain rule for functional
derivatives to eq 11 gives the chemical hardness,

in agreement with the definition of Parr and Pearson.4 Finally,
by choosingτ ) 1, enforcing the normalization constraint on
eq 11 with the Lagrange multiplier 2η, and minimizingη[FN0;g]
with respect tog(rb), one obtains the known result:31,32

The master problem of density functional theory is to find the
ground-stateN0-electron density for the molecule withN0

electrons in the external potentialν0(rb). This task is ordinarily

done by applying the variational principle for the energy (eq
2), but here we outline an alternative. Suppose we are given an
approximate N0-electron density,F̃N0(rb), for the molecule with
external potentialν0(rb). Suppose furthermore that we know the
exact ground-state densities for the (N0 + τ)- and (N0 - τ)-
electron systems with the same external potential.33 Then, if
FN0(rb) is the ground-state density for an external potential,ν̃(rb),
which is an infinitesimal variation ofν0(rb),34 and if τ is small
enough, we may truncate the Taylor expansion (eq 6) at second
order, giving

Again, see Table 1 for notation. Adding the two eqs 15 and
rearranging terms gives

In analogy with eq 11 we define a hardness functional:

(25) Chattaraj, P. K.; Liu, G. H.; Parr, R. G.Chem. Phys. Lett.1995,
237, 171.

(26) Chattaraj, P. K. Proc. Indian Natl. Sci. Acad.1996, 62A, 513.
(27) Chattaraj, P. K.; Cedillo, A.; Parr, R. G.Chem. Phys.1996, 204,

429.
(28) Pearson, R. G.J. Chem. Educ.1999, 76, 267.
(29) Yang, W. T.; Parr, R. G.; Pucci, R.J. Chem. Phys.1984, 81, 2862.
(30) Berkowitz, M.; Parr, R. G.J. Chem. Phys.1988, 88, 2554.
(31) Chattaraj, P. K.; Cedillo, A.; Parr, R. G.J. Chem. Phys.1995, 103,

7645.
(32) Ghosh, S. K.Chem. Phys. Lett.1990, 172, 77.

(33) If we do not know the exact (N + τ)- and (N - τ)-electron densities,
we can get them by minimizingεν0[FN0+τ] andεν0[FN0-τ] in eq 15 subject to
constraints that∫FN0+τ(rb) ) N0 + τ and∫FN0-τ(rb) ) N0 - τ.

Table 1. Summary of Notation for Section III

quantity definition and symbol notes and key concepts

1 chemical potential
µ ≡ (∂E

∂N)ν0( rb)

the chemical potential is the negative of the Mulliken electronegativity;3,12

electronegativity equalization follows from the fact thatµ is a global
constant3,13-15

2 chemical hardness
η ≡ (∂2E

∂N2)
ν0( rb)

hard/soft acid/base theory;4,16-18 maximum hardness principle19-28

3 Fukui function7
f( rb) ≡ (∂F( rb)

∂N )
ν0

) ( δµ
δν0( rb))N

site reactivity index; reduces to frontier molecular orbital densities in
the absence of orbital relaxation29

4 modified potential u[F( rb); rb] ) ν[F( rb); rb] - µ ν[F(rb);rb] is the external potential for whichF(rb) is theN-electron
ground-state density

5 stationary principle δεν0
[F]

δF( rb)
) ν0( rb) - u[F( rb); rb]

whenF0(rb) is the ground-state density for the external potential
ν0(rb), u(rb) ) µ - ν0(rb) and henceδεν0[F]/δF(rb) ) µ

6 hardness kernel30

η[F0( rb); rb,rb′] ≡
δ2εν0

[F0]

δF( rb′)δF( rb)

variational principle for the Fukui function (eqs 11 and 14);31,32

Berkowitz-Parr relation30

f[FN0
; rb] ≡ (∂FN0

( rb)

∂N )
ν0

(12)

η[FN0
] ≡ ∫∫ δ2εν0

[FN0
]

δF( rb′)δF( rb)(∂FN0
( rb)

∂N )
ν0

(∂FN0
( rb′)

∂N )
ν0

drb drb′

) (∂2E0

∂N2)
ν0

|N0
(13)

η[FN0
] ) ∫f[FN0

; rb]η[FN0
; rb,rb′] d rb (14)

E0[FN0+τ] ) εν0
[FN0+τ] ) εν0

[F̃N0
] +

∫(µ[F̃N0
] - ν̃( rb) + ν0( rb))(FN0+τ( rb) - F̃N0

( rb)) drb +

1/2∫∫η[F̃N0
; rb,rb′]{(FN0+τ( rb) - F̃N0

( rb))(FN0+τ( rb′) -

F̃N0
( rb′))} drb drb′

E0[FN0-τ] ) εν0
[FN0-τ] ) εν0

[F̃N0
] + ∫(µ[F̃N0

] - ν̃( rb) +

ν0( rb))(FN0-τ( rb) - F̃N0
( rb)) drb + 1/2∫∫η[F̃N0

; rb,rb′] ×
{(FN0-τ( rb) - F̃N0

( rb))(FN0-τ( rb′) - F̃N0
( rb′))} drb drb′

(15)

2εν0
[FN0

] ) E0[FN0-τ] + E0[FN0+τ]

- ∫{(µ[F̃N0
] - ν̃( rb) + ν0( rb))(FN0+τ( rb) - F̃N0

( rb))} drb

- ∫{(µ[F̃N0
] - ν̃( rb) + ν0( rb))(FN0-τ( rb) - F̃N0

( rb))} drb

- 1/2∫∫η[F̃N0
; rb,rb′]{(FN0+τ( rb) - F̃N0

( rb))(FN0+τ( rb′) -

F̃N0
( rb′))} drb drb′

- 1/2∫∫η[F̃N0
; rb,rb′]{(FN0-τ( rb) - F̃N0

( rb))(FN0-τ( rb′) -

F̃N0
( rb′))} drb drb′

(16)
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Equations 16 and 17 provide different ways to find the
ground-state density. We can use the second Hohenberg-Kohn
theorem and minimizeεν0[F̃N0] (eq 16) subject to the constraint
that N[F̃N0] ) N0. Equivalently,we can find the ground-state
N0-electron density for the system with external potentialν0(rb)
by maximizing the hardness functional,η̃ν0[F̃N0] (eq 17), subject
to the constraint that N[F̃N0] ≡ ∫F̃N0(rb) drb ) N0. Since theN0-
electron density that maximizesη̃ν0[F̃N0] is simply the exact
ground-stateN0-electron density for the system, eqs 12 and 13
show that, at the maximum,

We conclude this section by considering the perhaps puzzling
question of why one minimizes the hardness functional of eq
11 and maximizes the hardness functional of eq 17. Define the
generalized hardness functional,

whereF̃N0+τ, F̃N0, and F̃N0-τ are (N0 + τ)-, N0-, and (N0 - τ)-
electron densities, respectively. Equation 11 is the special case
of eq 19 in whichF̃N0 ) FN0,exact. Hence, minimizing the energies
of the (N0 + τ)- and (N0 - τ)-electron systems amounts to
minimizing the hardness functional in eq 11 (see Figure 1a).
On the other hand, eq 17 represents the special case of eq 19
whereF̃N0-τ ) FN0-τ,exactandF̃N0+τ ) FN0+τ,exact. As earlier noted
by Zhou and Parr,20 in this case minimizing the energy of the
N0-electron system equates to maximizing the hardness (see
Figure 1b).

IV. Principles Governing Multicomponent Systems

In the foregoing, we have concentrated on minimizingεν0[F]
subject to a fixedN0 ) ∫F(rb) drb. Alternatively, we can force

the normalization constraint with a Lagrange multiplier,µ,
thereby introducing the grand potential,6,35

Minimization of the grand potential at constantµ represents an
alternative variational principle to eq 2. Stating this result
formally, let Fµ0(rb) be the ground-state density andΩ0[Fµ0] the
ground-state grand potential for the system with chemical
potential µ0 and external potentialν0(rb). Let G̃µ0(rb) be a trial
density that also has chemical potentialµ0. Then

In this scheme, changes in particle number are induced by
changes inµ, the chemical potential (see Table 1). There are
two ways to effect an increase in the number of electrons in
the system: either add electrons directly (increaseN) or increase
the electronegativity (decreaseµ), thereby driving the system

(34) F̃N0(rb) must beν-representable because the functional derivative in
row 5 of Table 1 does not exist unlessν0[F̃N0;rb] is defined. In addition,
F̃N0(rb) must be close enough to the true ground-state density for the truncated
Taylor series expansion to be accurate. These two assumptions, coupled
with the assumption that if two external potentials are close together the
ground-stateN-electron densities for those potentials will also be close
together (i.e., we assume that (δFN0(rb)/δν0(rb′))N)N0 exists), recovers the
condition stated in the text.

(35) Parr, R. G.; Ga´squez, J. L.J. Phys. Chem.1993, 97, 3939.

η̃ν0
[F̃N0

] ≡
E0[FN0+τ( rb)] - 2εν0

[F̃N0
( rb)] + E0[FN0-τ( rb)]

τ2

) 1

τ2
×

{∫(µ[F̃N0
] - ν̃( rb) + ν0( rb))(FN0+τ( rb) - F̃N0

( rb)) drb

+∫(µ[F̃N0
] - ν̃( rb) + ν0( rb))(FN0-τ( rb) - F̃N0

( rb)) drb

+ 1/2∫∫η[F̃N0
; rb,rb′](FN0+τ( rb) - F̃N0

( rb))(FN0+τ( rb′) - F̃N0
( rb′)) drb drb′

+ 1/2∫∫η[F̃N0
; rb,rb′](FN0-τ( rb) - F̃N0

( rb))(FN0-τ( rb′) - F̃N0
( rb′)) drb drb′

}
(17)

(FN0+τ( rb) - F̃N0
( rb)) f (FN0+τ( rb) - FN0

( rb)) ) τf[FN0
; rb]

η̃ν0
[F̃N0

] f η[FN0
]

(18)

ην0
[F̃N0+τ,F̃N0

,F̃N0-τ] ≡

lim
τf0+{εν0

[F̃N0+τ( rb)] - 2εν0
[F̃N0

( rb)] + εν0
[F̃N0-τ( rb)]

τ2 } (19)

Figure 1. Variational principle for the Fukui function: (a) minimum
and (b) maximum hardness principle. The dashed lines represent the
unoptimized calculations, while the solid lines represent the solution
from the variational principles.η is the curvature of the plot at the
midpoint. (a) In the variational principle for the Fukui function (eq
11), loweringεν0[FN+τ] andεν0[FN-τ] decreases the hardness. (b) In the
variational principle for the density at fixedN (eq 17), loweringεν0[FN]
increases the hardness.

Ων0
[F] ≡ εν0

[F] - N[F]µ (20)

Ων0
[F̃µ0

] g Ων0
[Fµ0

] ) Ω0[Fµ0
] (21)
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to take electrons from its surroundings. Using eq 20 amounts
to changing the basic variables describing the system fromN
andν0(rb) to µ andν0(rb).36,37

Chemical reactions involve systems whose components
interact strongly with one another (e.g., functional groups within
a molecule, molecules in solution, etc.). In such systems, the
indistinguishability of electrons prevents one from assigning
them to any particular component, rendering the number of
electrons,Nc, in a particular component ill-defined. Hence,Nc

and ν0(rb) are not the most suitable variables for discussing a
component of a system. On the other hand, electronegativity
equalization ensures thatµ is a global quantity; hence, the
chemical potential of a particular component,µc, is uniquely
defined. Consequently,µc andν0(rb) are highly suitable variables
for discussing an individual component of a system. In analogy
to the situation described in section III, we expect that
understanding howΩν0[Fµ0] changes as the density and chemical
potential change will yield insight into chemical reactivity. Table
2 lists and characterized quantities associated with this approach.

For a system consisting of strongly interacting components,
the most reactive components are apt to be those most sensitive
to changes in the chemical potential.42 So we may begin to
understand chemical reactivity for systems of strongly interact-
ing components by addressing the following question:How does
the density change when we increase the chemical potential
(decrease the electronegatiVity) while keeping the external
potential (nuclear configuration) of the molecule fixed?

Let Fµ0(rb) be theexactground-state density for a system with
external potentialν0(rb) and chemical potentialµ0. What happens
when the chemical potential increases a small amount,τ?

Assuming thatτ is small enough, the Taylor expansion can be
truncated at second order, yielding

In deriving eq 22, we have replaced functional derivatives of
Ων0[F] with notation from Table 2. The variational principle
(eq 21) implies the following:the best way to change the density
as the chemical potential increases fromµ0 to µ0 + τ is found
by minimizing the functional

subject to the constraint thatµ[Fµ0(rb) + ∆F+τ(rb)] ) µ0 + τ. The
solution to this minimization isτ times the local softness:30,38

Accordingly, just as eq 11 provides a variational method for
determining the Fukui function, eq 23 provides a variational
method for determining the local softness.

Choosingτ < 0 generalizes eq 23 to decreases in chemical
potential,

The function which minimizes eq 25 subject to the constraint
that µ[Fµ0(rb) + ∆F-τ(rb)] ) µ0 - τ is -τs[Fµ0;rb].

Equivalent to minimizing eqs 23 and 25 separately is
minimizing them together; i.e., minimize

(36) Nalewajski, R. F.; Capatani, J. F.J. Chem. Phys.1982, 77, 399.
(37) For atoms and molecules,µ ) (∂E/∂N)ν0 increases monotonically

with N. This is important since it ensures that aµ can be expressed as a
function of N, which allows one to useµ as a “stand-in” forN.

(38) Yang, W. T.; Parr, R. G.Proc. Natl. Acad. Sci. U.S.A.1985, 82,
6723.

(39) Méndez, F.; Ga´zquez, J. L.J. Am. Chem. Soc.1994, 116, 9298.
(40) There are many different definitions of the local hardness; the one

used in this paper is merely convenient for our purposes. See ref 30 for a
more detailed discussion of this ambiguity.

(41) Liu, S.; Parr, R. G.J. Chem. Phys.1997, 106, 5578.
(42) When the attacking species is soft, the most reactive components

are apt to be those most sensitive to changes in the chemical potential. On
the other hand, when the attacking species is hard, the hard/soft acid/base
principle indicates that the most reactive components will be those of similar
hardness. The statement in the text is often appropriate for discussions of
covalent bond formation when the reactants are not ambidentate.

Table 2. Summary of Notation for Section IV

quantity definition and symbol notes and key concepts

1 particle number
N ≡ (∂Ω

∂µ )ν0( rb)

2 softness4
S≡ (∂2Ω

∂µ2)
ν0( rb)

the softness is the reciprocal of the
hardness (see Table 1, row 2),
S≡ 1/η

3 local softness30,38

s( rb) ≡ (∂F( rb)
∂µ )

ν0

) -( δN
δν0( rb))µ

site reactivity index; related to the
Fukui function (Table 1, row 3)
by s(rb) ) Sf(rb); local version of
the hard/soft acid/base principle

4 local hardness40,41

η( rb) ≡ δµ[F]

δF( rb)

compare this definition to that of the
local softness

5 first functional
derivative ς[F̃; rb] ≡

δΩν0
[F̃]

δF( rb)
) ν0( rb) - ν[F̃; rb] - N[F̃]η[F̃; rb]

this result is obtained from eq 20,
Table 1, previous definitions in
this table, andδN[F]/δF(rb) ) 1;
whenF̃(rb) is the ground-state
density, the first two terms cancel

6 second functional
derivative ς[F̃; rb,rb′] ≡

δ2Ων0
[F̃]

δF( rb′)δF( rb)
) η[F̃; rb,rb′] - η[F̃; rb] - η[F̃; rb′] - N[F̃]

δη[F̃; rb]

δF( rb′)

this result is obtained from the
definition of Ων0[F], results from
Table 1, and results from this table

Ων0
[Fµ0

+ ∆F+τ] ) Ω0[Fµ0
] + ∫ς[Fµ0

; rb]∆F+τ( rb) drb +

1/2∫∫ς[Fµ0
; rb,rb′]∆F+τ( rb)∆F+τ( rb′) drb drb′ (22)

Ων0
[Fµ0

+ ∆F+τ] - Ω0[Fµ0
] ) ∫ς[Fµ0

; rb]∆F+τ( rb) drb +

1/2∫∫ς[Fµ0
; rb,rb′]∆F+τ( rb)∆F+τ( rb′) drb drb′ (23)

s[Fµ0
; rb] ≡ (∂Fµ0

( rb)

∂µ )
ν0

(24)

Ων0
[Fµ0

+ ∆F-τ( rb)] - Ω0[Fµ0
] ≡ ∫ς[Fµ0

; rb]∆F-τ( rb) drb +

1/2∫∫ς[Fµ0
; rb,rb′]∆F-τ( rb)∆F-τ( rb′) drb drb′ (25)

Ων0
[Fµ0

+ ∆F+τ( rb)] - 2Ω0[Fµ0
] + Ων0

[Fµ0
+ ∆F-τ( rb)] ≡

∫ς[Fµ0
; rb](∆F+τ( rb) + ∆F-τ( rb)) drb + 1/2∫∫ς[Fµ0

; rb,rb′] ×
{∆F+τ( rb)∆F+τ( rb′) + ∆F-τ( rb)∆F-τ( rb′)} drb drb′ (26)
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subject to the following constraints:

We may add another constraint, but it will increase the minimum
value (and hence change the minimizing function) unless the
constraint is satisfied at the solution point. However,

is satisfied at the solution point, where∆F+τ(rb) ) τs[Fµ0;rb] )
-(-τs[Fµ0;rb]) ) -(∆F-τ(rb)).

Constraint (3) simplifies the minimization. Now one mini-
mizes

subject to the constraint thatµ[Fµ0(rb) + ∆F+τ(rb)] ) µ0 + τ.
Since changingτ only scales the solution from eq 27, we

chooseτ ) 1. Since-S) (∂2Ω/∂µ2)ν0|µ0, we may regard eq 27
as a “softness functional”. Restating our results from this
perspective,the local softness is the function,∆F+1(rb), which
minimizes

subject to the constraint thatµ[Fµ0(rb) + ∆F+1(rb)] ) µ0 + 1. At
the minimum,-Sν0[Fµ0,∆F+1(rb)] becomes-S[Fµ0]. Moreover,
since the chemical softness is a nonnegative quantity, minimiz-
ing -Sis equivalent to minimizing the reciprocal of the softness,
η.

Suppose we do not know the exact ground-state density for
µ ) µ0 and external potentialν0(rb), but only anapproximate
density with chemical potentialµ0, F̃µ0(rb). Furthermore, suppose
that we know the exact ground-state densities for the external
potentialν0(rb) with chemical potentialsµ0 ( τ, Fµ0(τ(rb),43 and
that F̃µ0(rb) is the ground-state density for an external potential,
ν̃(rb), which is very close toν0(rb).44 Then, for sufficiently small
τ, the power series expansions forΩν0[Fµ0(τ] centered on the
densityF̃µ0(rb) may be truncated at second order. While one can
find a variational principle for the ground-state density by
performing a derivation like eqs 15-17 in section III, we avoid
this by modifying eq 26snow, instead of trying to find the
correct density forµ ) µ0 ( τ, we are trying to find the correct
density forµ ) µ0. Accordingly,the exact density with external
potentialν0(rb) and chemical potentialµ0 may be obtained by
maximizing

subject to the constraint thatµ[F̃µ0] ) µ0. In eq 29 we have
defined ∆F̃(τ(rb) ≡ Fµ0(τ(rb) - F̃µ0(rb). Since the softness is

positive, maximizing-S is equivalent to maximizing the
hardness. Arguments similar to those at the close of section III
explain why one minimizes-S in eq 28 but maximizes-S in
eq 2924 (see Figure 2).

Extending a result that was originally inferred by Zhou and
Parr in the context of Hu¨ckel theory,21,24 Parr and Chattaraj
proved that, at constant chemical and external potentials, the
ground state of a system has greater hardness than any nearby
state which can be reached by an infinitesimal change in the
external potential.22 Since we have made the same assumptions
in our derivation of eq 29 and since maximizing-Sis equivalent

(43) A comment similar to note 33 applies here: we can use the Taylor
series expansion centered onF̃µ0(rb) to find an expression forΩν0[F̃µ0(τ]
that can be minimized to findFµ0(τ(rb).

(44) Similar to the comment of note 34, what is required is thatF̃µ0(rb)
beν-representable (the functional derivative in row 5 of Table 2 is undefined
unlessν0[F̃µ0;rb] is defined) and also close enough to the exact ground-state
density for the second-order truncation of the functional Taylor series to
be accurate. Assuming that (δFµ0(rb)/δν0(rb′))µ)µ0 exists, the condition stated
in the text is equivalent to these requirements.

(1) µ[Fµ0
( rb) + ∆F-τ( rb)] ) µ0 - τ

(2) µ[Fµ0
( rb) + ∆F+τ( rb)] ) µ0 + τ

(3) ∆F+τ( rb) ) -∆F-τ( rb)

Ων0
[Fµ0

+ ∆F+τ( rb)] - 2Ω0[Fµ0
] + Ων0

[Fµ0
+ ∆F-τ( rb)] ≡

∫∫ς[Fµ0
; rb,rb′]∆F+τ( rb)∆F+τ( rb′) drb drb′τ (27)

-Sν0
[Fµ0

,∆F+1( rb)] )

∫∫ς[Fµ0
; rb,rb′]∆F+1( rb)∆F+1( rb′) drb drb′ (28)

Ω0[Fµ0
+ ∆F+τ( rb)] - 2Ων0

[F̃µ0
] + Ω0[Fµ0

+ ∆F-τ( rb)]

≡ -S̃ν0
[F̃µ0

]

) ∫ς[F̃µ0
; rb](∆F̃+τ( rb) + ∆F̃-τ( rb)) drb +

1/2∫∫ς[F̃µ0
; rb,rb′](∆F̃+τ( rb)∆F̃+τ( rb′) +

∆F̃-τ( rb)∆F̃-τ( rb′)) drb drb′ (29)

Figure 2. (a) Variational principle for the local softness, minimizing
-S. (b) Parr-Chattaraj maximum hardness principle. The dashed lines
represent the unoptimized calculations, while the solid lines represent
the solution from the variational principles.-S is the curvature of the
plot at the midpoint. (a) In the variational principle for the local softness
function (eq 28), loweringΩν0[Fµ+τ] and Ων0[Fµ-τ] decreases-S
(equivalently, the hardness). (b) In the variational principle for the
density at fixedµ (eq 29), loweringΩν0[Fµ] increases-S(equivalently,
the hardness).
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to maximizing the hardness, eq 29 is equivalent to the maximum
hardness principle of Parr and Chattaraj.

Sebastian has questioned the validity of the Parr-Chattaraj
proof.45 While the validity of the Parr-Chattaraj proof has been
defended,25,27 the dispute makes it desirable to find a straight-
forward derivation of the Parr-Chattaraj maximum hardness
principle. The present derivation (along with Figure 2b) achieves
this goal.

VI. Conclusions

In this paper we have used the basic variational principles of
density functional theory, eqs 2 and 21, to develop variational
principles for quantities of importance in the theory of molecular
reactivity. We have elucidated two variational methods for
determining the ground-state density:

(1) Maximum Hardness Principle (Zhou and Parr).20 The
exact ground-state density is the function which maximizes the
hardness functional,η̃ν0[F̃N0] (eq 17), subject to the constraints
that ∫F̃N0(rb) drb ) N0 and that the trial densities,F̃N0(rb), are
ground-state densities for external potentials close to that of
the system of interest.34 When evaluated at the solution point,
η̃ν0[F̃N0] equals the chemical hardness.

(2) Maximum Hardness Principle (Parr and Chattaraj).22

The exact ground-state density is the function which maximizes
the softness functional,-S̃ν0[F̃µ0] (eq 29), subject to the
constraints thatµ[F̃µ0] ) µ0 and that the trial densities,F̃µ0(rb),
are ground-state densities for external potentials close to that
of interest.44 At the solution point,-S̃ν0[F̃µ0] is the negative of
the softness. Maximizing-S̃ν0[F̃µ0] is equivalent to maximizing
the hardness,η ) -(1/-S).

We have also developed variational principles for the two
basic predictors of molecular site reactivity within a density
functional theory description: the Fukui function and the local
softness.

(3) Variational Principle for the Fukui Function (Chat-
taraj, Cedillo, and Parr). 31 The Fukui function is the function
which minimizesη[FN0;∆F+1] of eq 11 subject to the constraint
∫∆F+1(rb) drb ) 1. When evaluated at the solution point,
η[FN0;∆F+1] becomes the chemical hardness.

(4) Variational Principles for the Local Softness (Present
Work). The local softness is the function which minimizes
-Sν0[Fµ0,∆F+1(rb)] (eq 28; eqs 23 and 25 provide alternative
variational principles), subject to the constraint thatµ[Fµ0(rb) +
∆F+1(rb)] ) µ0 + 1. At the solution point,-Sν0[Fµ0, ∆F+1(rb)]
equals the negative of the chemical softness. Minimizing-S is
equivalent to minimizing the hardness,η.

Variational principles (3) and (4) are exact because their
solutions are infinitesimal quantities (eqs 12 and 13; eq 24) and
infinitesimal changes are treated exactly by the second-order
truncation of the Taylor series. The accuracy of variational
principles (1) and (2) depends on the validity of the second-
order truncation of the Taylor series; this truncation is accurate
only when the trial densities are ground-state densities for
external potentials close to the external potential of interest.34,44

We may remove the restriction to densities that are ground states
for some external potential by using a constrained search
formulation of density functional theory to “assign” external
potentials to all densities. (Lieb’s constrained-search formal-
ism,46 which explicitly maps densities to an external potential,47

is particularly useful.) The restriction that the trial density be
close enough to the solution for the second-order Taylor series

to converge may be relaxed by including higher order terms in
the Taylor series expansion. In the limit where the Taylor series
is not truncated at all (and assuming the series converges), we
find expressions for the universal functionals:

in terms of quantities related to the trial density.
The variational principles (1) and (2) may prove useful

computationally, but of greater general interest are the funda-
mental maximum hardness principles which follow from eqs
30 and 31:

(1′) Maximum Hardness Principle (Zhou and Parr).20 The
best way to arrangeN0 electrons in the external potential,ν0(rb),
is that which maximizes the chemical hardness (eq 30) (see
Figure 1b).

(2′) Maximum Hardness Principle (Parr and Chattaraj).22

The best way to arrange electrons in the external potential,ν0(rb),
at chemical potentialµ0 is that which maximizes the hardness
(or, equivalently, maximizes-S (eq 31)) (see Figure 2b).

Pearson has proposed that hardness measures the stability of
a molecule.19 The variational principles support this result. Given
ν0(rb), a molecule is most stable for the ground-state density. In
the energetic formulation, one finds the ground-state density
by minimizing the total energy (eq 1) when the number of
electrons is fixed and by minimizing the grand potential (eq
20) when the chemical potential is fixed. By contrast, maximiz-
ing the hardness gives the ground-state density in the case in
which N is fixed and in the case in whichµ is fixed.

On the other hand, a molecule,M, is less stable when one
optimizes the density of the molecular cation,M+, and anion,
M-, since decreasing the energy penalty for removing an
electron and increasing the energy payoff for adding an electron
makes the disproportionation reaction,

more favorable.20 Since variational principles3 and4 indicate
that the best way to change the number of electrons or the
chemical potential ofM is the way that minimizes its hardness,
we find agreement with the assertion that small hardness means
decreased stability.

Suppose we are given two reactant molecules, L and M, with
hardnessesηL andηM, respectively. IfηL andηM are small, we
would predict that the reactant molecules are relatively unstable
and that a chemical reaction between the species L and M is
likely to occur. To predict where bonds form and break, we
need a reactivity index that is a function of position. From
section III, the Fukui functions,fL(rb) andfM(rb) indicate the best
way to change the numbers of electrons in the molecules L and
M. Hence, the Fukui function indicates the propensity of the
density to deform at a given position in order to accept/donate
electrons. We expect bonds to form between those parts of L
and M which most readily accept/donate electrons. Therefore,
we expect bonds to form between regions of L wherefL(rb) is
large and regions of M wherefM(rb) is large.7,11 This leads
naturally to the following question: How does one assign a
value of the Fukui function (which is inherently pointwise) to
a “region” in a molecule? A natural method is to introduce the

(45) Sebastian, K. L.Chem. Phys. Lett.1994, 231, 40.
(46) Lieb, E. H.Int. J. Quantum. Chem.1983, 24, 243.
(47) Colonna, F.; Savin, A.J. Chem. Phys.1999, 110, 2828.

η̃ν0
[F̃N0

] ≡
E0[FN0+τ( rb)] - 2εν0

[F̃N0
( rb)] + E0[FN0-τ( rb)]

τ2
(30)

-S̃ν0
[F̃µ0

] )
Ω0[Fµ0+τ] - 2Ων0

[F̃µ0
] + Ω0[Fµ0-τ]

τ2
(31)

2M f M+ + M- (32)
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so-called “condensed Fukui function”, by which one affixes a
Fukui “index” to each atom in the molecule by partitioning the
molecule into atomic contributions.48 The net effect is to convert
the point-by-point site reactivity information of the Fukui
function into (often more useful) information about the pro-
pensity of a molecule to react at a particular atomic site.

The situation is more complex when the system consists of
many interacting components with hardnessesηA, ηB, ηC ... and
Fukui functionsfA(rb), fB(rb), fC(rb) ... . In this case, molecule B
may have a small value of the hardness (and hence enhanced
global reactivity) but no places,rbB, wherefB(rbB) is especially
large (and hence no especially reactive sites). On the other hand,
molecule C may have a large value of the hardness but an
especially reactive site,rbC, wherefC(rbC) is large. The situation
is complicated still further by the hard/soft acid/base principles
molecules tend to react where the Fukui function is the largest
when attacked by soft reagents and in places where the Fukui
function is smaller when attacked by hard reagents.

In this case, the key site reactivity indexes are the local
softnesses,sA(rb), sB(rb), sC(rb) ... and the key principle is the local
hard/soft acid/base principle of Me´ndez and Ga´zquez.39 Suppose
we add a molecule Q, with reactive siterbQ and a local softness
of sQ(rbQ) at the reactive site. Q will tend to react with the species
(A, B, or C) whose local softness at the reactive site, (sA(rbA),
sB(rbB), or sC(rbC)) is closest tosQ(rbQ). It is clear that the analogue
of the condensed Fukui function indexes, the “condensed local
softness indexes”, may be helpful for deciphering reactivity
patterns.
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Appendix: Dealing with Systems with a Nonintegral
Number of Electrons

We should discuss the validity of the idea of adding and
subtracting a “fraction” of an electron from the system. Though
there are no real “pieces of an electron”, the idea of a “piece of
an electron” is necessary in order to define functional derivatives
since eqs 3 and 4 require considering variations in the density
which change the number of particles by nonintegral amounts.
Moreover, if one defines the number of electrons,Nopen, in an
open system like a functional group within a molecule, the
number of electrons will generally be nonintegral, rendering
fractional numbers of electrons a necessary concept for this
circumstance.

A common approach for extending DFT to nonintegral
numbers of electrons uses the grand canonical ensemble. That
is, one imagines putting many replicas of a system in a box
with constant chemical potential and temperature and allowing
the replicas to exchange electrons. While each replica has an
integer number of electrons, the average number of electrons
per replica need not be an integer. By using this “average
number of electrons” as a stand-in for the physical number of
particles, one extends density functional theory to nonintegral
numbers of electrons.49 This method goes back to Gyftopoulos
and Hatsopoulos50 and Mermin.51

The grand canonical ensemble works well at nonzero tem-
peratures, giving well-behaved, fully differentiable density
functionals. However, in the limit of zero temperature the plot
of energy versus particle number is no longer smooth, consisting
instead of straight lines connecting the ground-state energies
of integer numbers of particles. LetN be an integer andδ be a
real number between 0 and 1, inclusive. Then, in the zero
temperature limit of the grand canonical ensemble,

These equations reveal that number increasing and number
decreasing variations in the density are now fundamentally
different in nature; hence, the functional derivatives from above
and below are no longer equal, and we must use one-sided
functional derivatives (eq 9).

The results in the body of this paper depend on the existence
of all functional derivatives and hence are valid for temperatures
greater than zero (though all the derivatives should have a
notation affixed to them to indicate that they are to be taken at
constant temperature). If one prefers to consider the case of zero
temperature, one constructs a smooth interpolation between
integer numbers of electrons. While this is possible, such
interpolations have undesirable features. Smooth interpolations
generally fail to predict the correct dissociation products for
bond-breaking reactions, predicting that fragments retain frac-
tional numbers of electrons (and hence partial charges).49

However, molecules dissociate into neutral atoms.
Should one prefer the zero temperature grand canonical

ensemble description, one must disregard section IV altogether;
the chemical potential can no longer be used to change the
number of particles in the system. (A given value of the
chemical potential corresponds to either an infinite number of
different systems (all those with particle numbers betweenN
andN + 1) or no systems at all (see eq A1); hence, the change
of variables from (N,ν0(rb)) to (µ,ν0(rb)) is invalid.) However, by
separately considering changes in the density which increase
the number of particles (functional derivatives from above) and
changes in the density which decrease the number of particles
(functional derivatives from below), one salvages section III.
For example, eq 11 splits into an equation in which the
functional derivatives are taken from above,

and an equation in which the derivatives are taken from below,

Corresponding to eqs A2 and A3, there will now be two different
solutions to the variational principle for the Fukui function:7

(48) Yang, W.; Mortier, W.J. Am. Chem. Soc.1986, 108, 5708.
(49) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L.Phys. ReV. Lett.

1982, 49, 1691.
(50) Gyftopoulos, E. P.; Hatsopoulos, G. N.Proc. Natl. Acad. Sci. U.S.A.

1965, 60, 786.
(51) Mermin, N. D.Phys. ReV. 1965, 137, A1441.

E[N + δ,ν0] ) (1 - δ)E[N,ν0] + δE[N + 1,ν0]

F[N + δ,ν0] ) (1 - δ)F[N,ν0] + δF[N + 1,ν0]

µ[N + δ,ν0] ) {E[N + 1,ν0] - E[N, ν0] 0 < δ < 1
undefined δ ) 0, δ ) 1

(A1)

η[N + δ,ν0] ) {0 0 < δ < 1
undefined δ ) 0, δ ) 1

η+[FN0
;∆F+τ] ≡ ∫∫η+[FN0

; rb,rb′]∆F+τ( rb)∆F+τ( rb′) drb drb′
(A2)

η-[FN0
;∆F-τ] ≡ ∫∫η-[FN0

; rb,rb′]∆F-τ( rb)∆F-τ( rb′) drb drb′
(A3)
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In accord with eq A1, the hardnesses from above and below
are zero. The other major result from section III is eq 17, which
becomes

η̃ν0
[F̃N0

] ≡
E0[FN0+τ( rb)] - 2εν0

[F̃N0
( rb)] + E0[FN0-τ( rb)]

τ2

) 1

τ2
×

{∫(µ+[F̃N0
] - ν̃( rb) + ν0( rb))(FN0+τ( rb) - F̃N0

( rb)) drb

+ ∫(µ-[F̃N0
] - ν̃( rb) + ν0( rb))(FN0-τ( rb) - F̃N0

( rb)) drb

+ 1/2∫∫η+[F̃N0
; rb,rb′](FN0+τ( rb) - F̃N0

( rb))(FN0+τ( rb′) - F̃N0
( rb′)) drb drb′

+ 1/2∫∫η-[F̃N0
; rb,rb′](FN0-τ( rb) - F̃N0

( rb))(FN0-τ( rb′) - F̃N0
( rb′)) drb drb′

}
(A5)

The construction of a zero temperature grand canonical
ensemble has some benefits. For instance, consider the equation
for the density in eq A1. Rearranging, we find

Since in eq A6 the differential Fukui function (for vanishingly
smallτ) is equivalent to the finite difference approximation with
τ ) 1, it follows that the smallτ constraints pervading section
III are no longer necessaryseqs A2-A5 are exact for allτ
between 0 and 1. Of particular interest is the effect that this
has on eq A5; while the maximal function is always the correct
ground-state density, the maximizing value depends onτ, being
(µ+ - µ-)/τ ) (IP - EA)/τ, where EA) -µ+ is the electron
affinity and IP) -µ- is the ionization potential. Forτ ) 1, eq
A5’s maximum value agrees with the finite difference result
commonly used as an approximation to the hardness.4

JA9924039

f+[FN0
; rb] ≡ (∂FN0

( rb)

∂N )
ν0

+

f-[FN0
; rb] ≡ (∂FN0

( rb)

∂N )
ν0

+
(A4)

F[N + τ,ν0] - F[N,ν0]

τ
) (F[N + 1,ν0] - F[N,ν0]) (A6)
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